跳转至

Number Theorem 10th note

Now we turn to understand \(Q_{p}\). The general case will follow from Theorem 9.17.

Def 10.1

For an odd prime \(p\), the Legendre Symbol of any integer \(a\) is

\[ \left( \frac{a}{p} \right) = \begin{cases} 0, & \text{ if }p|a \\ 1, & a \in Q_{p} \\ - 1, & a \in U_{p}\backslash Q_{p} \end{cases} \]

Corollary 10.2

If \(p\) is an odd prime, and \(g\) is a primitive root \(\operatorname{mod}p\), then \(\left( \frac{g^{i}}{p} \right){= ( - 1)}^{i}\)

Pf

Lemma 9.14 shows that \(\left( \frac{g^{i}}{p} \right) = 1\) iff \(i\) is even.

Theorem 10.3

If \(p\) is an odd prime, then \(\left( \frac{ab}{p} \right) = \left( \frac{a}{p} \right)\left( \frac{b}{p} \right)\) for all integers \(a,b\).

(This is equivalent to say the map \(U_{p} \rightarrow \pm \left\{ - 1 \right\}\) is a group homomorphism.)

Pf

We may assume \(a,b \in U_{p}\) otherwise \(p\) divides \(a\) or \(b\) so that both sides are. We will make use of prim. root of \(U_{p}\): Let \(a = g^{i}\) and \(b = g^{j}\).

Then \(\left( \frac{ab}{p} \right) = ( - 1)^{i + j}{= ( - 1)}^{i}( - 1)^{j} = \left( \frac{a}{p} \right)\left( \frac{b}{p} \right)\).

Warning 10.4

In general \(\left( \frac{- a}{p} \right) \neq - \left( \frac{a}{p} \right)\).

Let \(p = 17\), then \(- 1 \equiv 4^{2}\) so \(\left( \frac{- 1}{17} \right) = 1\) and thus \(\left( \frac{a}{17} \right) = \left( \frac{- a}{17} \right)\) for \(a \in U_{17}\).

Theorem 10.5(8.4)

Let \(n\) be an integer possessing a primitive root and assume \(\gcd(a,n) = 1\). Then the congruence \(x^{k} \equiv a\operatorname{mod}n\) has a solution iff \(a^{\frac{\varphi(n)}{d}} \equiv d\operatorname{mod}n\), where \(d = \gcd(k,\varphi(n))\). Moreover, if it has a solution, then there are exactly \(d\) solutions \(\operatorname{mod}n\).

Theorem 10.6 (Euler)

If \(p\) is an odd prime, then for all integers \(a\) we have \(\left( \frac{a}{p} \right) \equiv a^{\frac{p - 1}{2}}\operatorname{mod}p\).

Pf

This is almost a special case of Theorem 8.4 where \(k = 2,\varphi(p) = p - 1\).

For the full proof, it is enough to establish \(a^{\frac{p - 1}{2}} \equiv \pm 1\operatorname{mod}p\).(this is easy!)

(Determine whether \(11 \in Q_{29}\))

Corollary 10.7 (Proposition 5.14)

Let \(p\) be an odd prime. Then \(- 1 \in Q_{p}\) iff \(p \equiv 1\operatorname{mod}4\).

Pf

Take \(a = - 1\) and we see that \(\left( \frac{- 1}{p} \right){= ( - 1)}^{\frac{p - 1}{2}}\operatorname{mod}p\). So \(- 1 \in Q_{p}\) iff \(\frac{p - 1}{2}\) is even iff \(p \equiv 1\operatorname{mod}4\).

Corollary 10.8

There are infinitely many primes \(p \equiv 1\operatorname{mod}4\).

Pf

Suppose that there are only finitely many primes \(p \equiv 1\operatorname{mod}4\), say \(p_{1},p_{2},\ldots p_{k}\). Let \(m = \left( 2p_{1}\ldots p_{k} \right)^{2} + 1\). This odd number \(m\) must be divisible by some odd \(p\). Then \(\left( 2p_{1}\ldots p_{k} \right)^{2} \equiv - 1\operatorname{mod}p\), that is, \(- 1 \in Q_{p}\). By the above Corollary, \(p \equiv 1\operatorname{mod}4\), so \(p = p_{i}\) for some \(i = 1,\ldots,k\).

We get a similar contradiction as before...

HW: 7.20

Problem

If \(p = 2^{k} + 1\) is prime, show that every quadratic nonresidue of \(p\) is a primitive root of \(p\).

10.1 Gauss's Lemma

We will prove a more effective way to compute the Legendre symbol \(\left( \frac{a}{p} \right)\) due to Gauss.

We partition \(U_{p} = {\mathbb{Z}}_{p}\backslash\left\{ 0 \right\}\) into two sets:

\[ P = \left\{ 1,2,\ldots\frac{,(p - 1)}{2} \right\},N = \left\{ - 1, - 2,\ldots,\frac{- (p - 1)}{2} \right\} = - P \]

For each \(a \in U_{p}\), we define \(aP = \left\{ ax~|~x \in P \right\} = \left\{ a,2a,\ldots,\frac{a(p - 1)}{2} \right\}\).

Theorem 10.9 (Gauss's Lemma)

If \(p\) is an odd prime and \(a \in U_{p}\), then \(\left( \frac{a}{p} \right){= ( - 1)}^{\mu}\), where \(\mu = |aP \cap N|\)

Pf

If \(x\) and \(y\) are distinct element of \(P\), then \(ax \neq \pm ay\) in \(U_{p}\). (\(P \sqcup N = U_{p}\)) This means that the elements of \(aP\) lies in distinct sets \(\left\{ \pm 1 \right\},\left\{ \pm 2 \right\},\ldots,\left\{ \pm \frac{p - 1}{2} \right\}\).

These \(\frac{p - 1}{2}\) sets must match \(\frac{p - 1}{2}\) elements in \(aP\). So \(aP = \left\{ \varepsilon_{i} \cdot i~|~i = 1,2,\ldots,\frac{p - 1}{p_{2}} \right\}\left( \varepsilon_{i} = \pm 1 \right)\).

Note that \(\begin{cases} \varepsilon_{i} = 1 & \text{ if }\varepsilon_{i} \cdot i \in P \\ \varepsilon_{i} = - 1 & \text{ if }\varepsilon_{i} \cdot i \in N \end{cases}\)

We multiply all elements in \(aP \subset U_{p}\) and get \(a^{\frac{p - 1}{2}} \cdot \left( \frac{p - 1}{2} \right)! = \left( \prod_{i}\varepsilon_{i} \right)\left( \frac{p - 1}{2} \right)!\)

Cancelling the unit \(\left( \frac{p - 1}{2} \right)!\), we see that \(a^{\frac{p - 1}{2}} \equiv ( - 1)^{\mu}\operatorname{mod}p\).

Invokiry Euler's criterion, we have that

\[ \left( \frac{a}{p} \right) \equiv a^{\frac{p - 1}{2}} \equiv ( - 1)^{\mu}\operatorname{mod}p \]

Since both sides are equal \(\pm 1\) and \(p > 2\), they must be strictly equal.

Ex 10.10

Let use Gauss's lemma to compute \(\left( \frac{11}{29} \right)\). \(P = \left\{ 1,2,\ldots,14 \right\}\) and \(11P = \left\{ 11,22,14 \cdot 11 \right\} = \left\{ 11, - 7,4, - 14, - 3,8, - 10,1,12, - 6,5, - 13, - 2,9 \right\}.\) \(\left( \frac{11}{29} \right){= ( - 1)}^{7} = - 1\)

Corollary 10.11

For \(p\) an odd prime, \(\left( \frac{2}{p} \right){= ( - 1)}^{\frac{p^{2} - 1}{8}}\), thus \(2 \in Q_{p}\) iff \(p \pm 1\operatorname{mod}8\).

Pf

Put \(a = 2\) in Gauss's lemma, and we get \(2P = \left\{ 2,4,\ldots,p - 1 \right\}\). We will discuss in two cases.

If \(p \equiv 1\operatorname{mod}4\), then \(2P = \left\{ 2,4,\ldots\frac{,(p - 1)}{2} \right\} \cup \left\{ \frac{p + 3}{2},\ldots,p - 1 \right\}\), we observe that the first \(\frac{p - 1}{4}\) elements in \(P\) and the remaining elements in \(N\). Thus \(\mu = \frac{p - 1}{4}\). So Gauss's lemma gives

\[\left( \frac{2}{p} \right){= ( - 1)}^{\frac{p - 1}{4}}{= \left( ( - 1)^{\frac{p - 1}{4}} \right)}^{\frac{p + 1}{2}}{= ( - 1)}^{\frac{p^{2} - 1}{8}},\left( \frac{p + 1}{2}\text{ is odd} \right)\]

If \(p \equiv - 1\operatorname{mod}4\), then \(2P = \left\{ 2,4,\ldots\frac{,(p - 3)}{2} \right\} \cup \left\{ \frac{p + 1}{2},\ldots,p - 1 \right\}\). Similarly, the first \(\frac{p - 3}{4}\) elements in \(P\), the rest in \(N. \Rightarrow \mu = \frac{p + 1}{4}\).

\[\left( \frac{2}{p} \right){= ( - 1)}^{\frac{p + 1}{4}}{= \left( ( - 1)^{\frac{p + 1}{4}} \right)}^{\frac{p - 1}{2}}{= ( - 1)}^{\frac{p^{2} - 1}{8}},\left( \frac{p - 1}{2}\text{ is odd} \right)\]

Finally, \(2 \in Q_{P} \Leftrightarrow \left( \frac{2}{p} \right) = 1 \Leftrightarrow \frac{p^{2} - 1}{8}\text{ is even } \Leftrightarrow 16|(p - 1)(p + 1) \Leftrightarrow 8|p - 1\text{ or }8|p + 1\).

Ex 10.12

By the above Corollary, \(2\) is a quadratic nonresidue \(\operatorname{mod}p\) for

\[p = 3,5,11,13,19,29,37,43,53,\ldots\]

known to be infinite by Dirichlet theorem

\(2\) is a primitive root for \(p = 3,5,11,13,19,29,37,53,\ldots\) "high" precentage

Despite of this we are still unable to prove Artin's conjecture.

\(g\) is a quadratic nonresidue \(\operatorname{mod}p\) iff \(g^{\frac{p - 1}{2}} ≢ 1\), but being a primitive root \(\operatorname{mod}p\) requires \(g^{\frac{p - 1}{q}} ≢ 1,\forall q~|~p - 1\).

Artin original heunstic

Assume that for distinct odd primes \(q\), the events "\(2^{\frac{p - 1}{q}} \equiv 1\left( \operatorname{mod}p \right)\)" are independent with probability \(\frac{1}{q}\), and the probability of \(q|p - 1\left( p \equiv 1\operatorname{mod}q \right)\) is roughly \(\frac{1}{q - 1}\).

Then the probability that none occure (it. 2 is primitive root) is

\[\text{ Artin constant} ≔ \prod_{q}\left( 1 - \frac{1}{q \cdot (q - 1)} \right)\]

Euler's observation

\[\begin{array}{r} \left( \frac{p}{q} \right) = \left( \frac{q}{p} \right)\text{ except for }p \equiv q \equiv 3\left( \operatorname{mod}4 \right) \\ \left\lbrack \left( \frac{p}{q} \right) = - \left( \frac{q}{p} \right)\text{ when }p \equiv q \equiv 3\operatorname{mod}4 \right\rbrack \end{array}\]

Ex

\[\left( \frac{11}{29} \right) = \left( \frac{29}{11} \right) = \left( \frac{7}{11} \right) = - \left( \frac{11}{7} \right) = - \left( \frac{4}{7} \right) = {- \left( \frac{2}{7} \right)}^{2} = - 1\]
\[\left( \frac{3}{p} \right) = \begin{cases} - \left( \frac{p}{3} \right) & \begin{aligned} = \begin{cases} 1, & \begin{array}{rlr} p & \equiv - 1 & \operatorname{mod}3 \end{array} \\ - 1, & \begin{array}{rlr} p & \equiv 1 & \operatorname{mod}3 \end{array} \end{cases}, & p \equiv 3\left( \operatorname{mod}4 \right) \end{aligned} \\ \left( \frac{p}{3} \right) & \begin{aligned} = \begin{cases} 1, & \begin{array}{rlr} p & \equiv 1 & \operatorname{mod}3 \end{array} \\ - 1, & \begin{array}{rlr} p & \equiv - 1 & \operatorname{mod}3 \end{array} \end{cases}, & p ≢ 3\left( \operatorname{mod}4 \right) \end{aligned} \end{cases} = \begin{cases} 1, & \begin{aligned} p \equiv 11,1 & \operatorname{mod}12 \end{aligned} \\ - 1, & \begin{aligned} p \equiv 7,5 & \operatorname{mod}12 \end{aligned} \end{cases}\]

HW: 7.10, 7.23, 7.24

10.13

There are infinitely many primes of the form \(8k - 1\). (hint: Consider \(N{= \left( 4p_{1}p_{2}\ldots p_{n} \right)}^{2} - 2\))

10.14

Prove that the odd prime divisor \(p\) of \(9^{n} + 1\) are of the form \(p \equiv 1\operatorname{mod}4\).

10.15

Show that for a prime \(p \equiv 1\operatorname{mod}4\), the sum of the quadratic residue of \(p\) is equal \(\frac{p(p - 1)}{4}\).