Number Theorem 10th note
Now we turn to understand \(Q_{p}\). The general case will follow from Theorem 9.17.
Def 10.1
For an odd prime \(p\), the Legendre Symbol of any integer \(a\) is
Corollary 10.2
If \(p\) is an odd prime, and \(g\) is a primitive root \(\operatorname{mod}p\), then \(\left( \frac{g^{i}}{p} \right){= ( - 1)}^{i}\)
Pf
Lemma 9.14 shows that \(\left( \frac{g^{i}}{p} \right) = 1\) iff \(i\) is even.
Theorem 10.3
If \(p\) is an odd prime, then \(\left( \frac{ab}{p} \right) = \left( \frac{a}{p} \right)\left( \frac{b}{p} \right)\) for all integers \(a,b\).
(This is equivalent to say the map \(U_{p} \rightarrow \pm \left\{ - 1 \right\}\) is a group homomorphism.)
Pf
We may assume \(a,b \in U_{p}\) otherwise \(p\) divides \(a\) or \(b\) so that both sides are. We will make use of prim. root of \(U_{p}\): Let \(a = g^{i}\) and \(b = g^{j}\).
Then \(\left( \frac{ab}{p} \right) = ( - 1)^{i + j}{= ( - 1)}^{i}( - 1)^{j} = \left( \frac{a}{p} \right)\left( \frac{b}{p} \right)\).
Warning 10.4
In general \(\left( \frac{- a}{p} \right) \neq - \left( \frac{a}{p} \right)\).
Let \(p = 17\), then \(- 1 \equiv 4^{2}\) so \(\left( \frac{- 1}{17} \right) = 1\) and thus \(\left( \frac{a}{17} \right) = \left( \frac{- a}{17} \right)\) for \(a \in U_{17}\).
Theorem 10.5(8.4)
Let \(n\) be an integer possessing a primitive root and assume \(\gcd(a,n) = 1\). Then the congruence \(x^{k} \equiv a\operatorname{mod}n\) has a solution iff \(a^{\frac{\varphi(n)}{d}} \equiv d\operatorname{mod}n\), where \(d = \gcd(k,\varphi(n))\). Moreover, if it has a solution, then there are exactly \(d\) solutions \(\operatorname{mod}n\).
Theorem 10.6 (Euler)
If \(p\) is an odd prime, then for all integers \(a\) we have \(\left( \frac{a}{p} \right) \equiv a^{\frac{p - 1}{2}}\operatorname{mod}p\).
Pf
This is almost a special case of Theorem 8.4 where \(k = 2,\varphi(p) = p - 1\).
For the full proof, it is enough to establish \(a^{\frac{p - 1}{2}} \equiv \pm 1\operatorname{mod}p\).(this is easy!)
(Determine whether \(11 \in Q_{29}\))
Corollary 10.7 (Proposition 5.14)
Let \(p\) be an odd prime. Then \(- 1 \in Q_{p}\) iff \(p \equiv 1\operatorname{mod}4\).
Pf
Take \(a = - 1\) and we see that \(\left( \frac{- 1}{p} \right){= ( - 1)}^{\frac{p - 1}{2}}\operatorname{mod}p\). So \(- 1 \in Q_{p}\) iff \(\frac{p - 1}{2}\) is even iff \(p \equiv 1\operatorname{mod}4\).
Corollary 10.8
There are infinitely many primes \(p \equiv 1\operatorname{mod}4\).
Pf
Suppose that there are only finitely many primes \(p \equiv 1\operatorname{mod}4\), say \(p_{1},p_{2},\ldots p_{k}\). Let \(m = \left( 2p_{1}\ldots p_{k} \right)^{2} + 1\). This odd number \(m\) must be divisible by some odd \(p\). Then \(\left( 2p_{1}\ldots p_{k} \right)^{2} \equiv - 1\operatorname{mod}p\), that is, \(- 1 \in Q_{p}\). By the above Corollary, \(p \equiv 1\operatorname{mod}4\), so \(p = p_{i}\) for some \(i = 1,\ldots,k\).
We get a similar contradiction as before...
HW: 7.20
Problem
If \(p = 2^{k} + 1\) is prime, show that every quadratic nonresidue of \(p\) is a primitive root of \(p\).
10.1 Gauss's Lemma
We will prove a more effective way to compute the Legendre symbol \(\left( \frac{a}{p} \right)\) due to Gauss.
We partition \(U_{p} = {\mathbb{Z}}_{p}\backslash\left\{ 0 \right\}\) into two sets:
For each \(a \in U_{p}\), we define \(aP = \left\{ ax~|~x \in P \right\} = \left\{ a,2a,\ldots,\frac{a(p - 1)}{2} \right\}\).
Theorem 10.9 (Gauss's Lemma)
If \(p\) is an odd prime and \(a \in U_{p}\), then \(\left( \frac{a}{p} \right){= ( - 1)}^{\mu}\), where \(\mu = |aP \cap N|\)
Pf
If \(x\) and \(y\) are distinct element of \(P\), then \(ax \neq \pm ay\) in \(U_{p}\). (\(P \sqcup N = U_{p}\)) This means that the elements of \(aP\) lies in distinct sets \(\left\{ \pm 1 \right\},\left\{ \pm 2 \right\},\ldots,\left\{ \pm \frac{p - 1}{2} \right\}\).
These \(\frac{p - 1}{2}\) sets must match \(\frac{p - 1}{2}\) elements in \(aP\). So \(aP = \left\{ \varepsilon_{i} \cdot i~|~i = 1,2,\ldots,\frac{p - 1}{p_{2}} \right\}\left( \varepsilon_{i} = \pm 1 \right)\).
Note that \(\begin{cases} \varepsilon_{i} = 1 & \text{ if }\varepsilon_{i} \cdot i \in P \\ \varepsilon_{i} = - 1 & \text{ if }\varepsilon_{i} \cdot i \in N \end{cases}\)
We multiply all elements in \(aP \subset U_{p}\) and get \(a^{\frac{p - 1}{2}} \cdot \left( \frac{p - 1}{2} \right)! = \left( \prod_{i}\varepsilon_{i} \right)\left( \frac{p - 1}{2} \right)!\)
Cancelling the unit \(\left( \frac{p - 1}{2} \right)!\), we see that \(a^{\frac{p - 1}{2}} \equiv ( - 1)^{\mu}\operatorname{mod}p\).
Invokiry Euler's criterion, we have that
Since both sides are equal \(\pm 1\) and \(p > 2\), they must be strictly equal.
Ex 10.10
Let use Gauss's lemma to compute \(\left( \frac{11}{29} \right)\). \(P = \left\{ 1,2,\ldots,14 \right\}\) and \(11P = \left\{ 11,22,14 \cdot 11 \right\} = \left\{ 11, - 7,4, - 14, - 3,8, - 10,1,12, - 6,5, - 13, - 2,9 \right\}.\) \(\left( \frac{11}{29} \right){= ( - 1)}^{7} = - 1\)
Corollary 10.11
For \(p\) an odd prime, \(\left( \frac{2}{p} \right){= ( - 1)}^{\frac{p^{2} - 1}{8}}\), thus \(2 \in Q_{p}\) iff \(p \pm 1\operatorname{mod}8\).
Pf
Put \(a = 2\) in Gauss's lemma, and we get \(2P = \left\{ 2,4,\ldots,p - 1 \right\}\). We will discuss in two cases.
If \(p \equiv 1\operatorname{mod}4\), then \(2P = \left\{ 2,4,\ldots\frac{,(p - 1)}{2} \right\} \cup \left\{ \frac{p + 3}{2},\ldots,p - 1 \right\}\), we observe that the first \(\frac{p - 1}{4}\) elements in \(P\) and the remaining elements in \(N\). Thus \(\mu = \frac{p - 1}{4}\). So Gauss's lemma gives
If \(p \equiv - 1\operatorname{mod}4\), then \(2P = \left\{ 2,4,\ldots\frac{,(p - 3)}{2} \right\} \cup \left\{ \frac{p + 1}{2},\ldots,p - 1 \right\}\). Similarly, the first \(\frac{p - 3}{4}\) elements in \(P\), the rest in \(N. \Rightarrow \mu = \frac{p + 1}{4}\).
Finally, \(2 \in Q_{P} \Leftrightarrow \left( \frac{2}{p} \right) = 1 \Leftrightarrow \frac{p^{2} - 1}{8}\text{ is even } \Leftrightarrow 16|(p - 1)(p + 1) \Leftrightarrow 8|p - 1\text{ or }8|p + 1\).
Ex 10.12
By the above Corollary, \(2\) is a quadratic nonresidue \(\operatorname{mod}p\) for
known to be infinite by Dirichlet theorem
\(2\) is a primitive root for \(p = 3,5,11,13,19,29,37,53,\ldots\) "high" precentage
Despite of this we are still unable to prove Artin's conjecture.
\(g\) is a quadratic nonresidue \(\operatorname{mod}p\) iff \(g^{\frac{p - 1}{2}} ≢ 1\), but being a primitive root \(\operatorname{mod}p\) requires \(g^{\frac{p - 1}{q}} ≢ 1,\forall q~|~p - 1\).
Artin original heunstic
Assume that for distinct odd primes \(q\), the events "\(2^{\frac{p - 1}{q}} \equiv 1\left( \operatorname{mod}p \right)\)" are independent with probability \(\frac{1}{q}\), and the probability of \(q|p - 1\left( p \equiv 1\operatorname{mod}q \right)\) is roughly \(\frac{1}{q - 1}\).
Then the probability that none occure (it. 2 is primitive root) is
Euler's observation
Ex
HW: 7.10, 7.23, 7.24
10.13
There are infinitely many primes of the form \(8k - 1\). (hint: Consider \(N{= \left( 4p_{1}p_{2}\ldots p_{n} \right)}^{2} - 2\))
10.14
Prove that the odd prime divisor \(p\) of \(9^{n} + 1\) are of the form \(p \equiv 1\operatorname{mod}4\).
10.15
Show that for a prime \(p \equiv 1\operatorname{mod}4\), the sum of the quadratic residue of \(p\) is equal \(\frac{p(p - 1)}{4}\).